V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
younggod
V2EX  ›  机器学习

想问问有用过 torch.profiler 的老哥吗

  •  
  •   younggod · 254 天前 · 801 次点击
    这是一个创建于 254 天前的主题,其中的信息可能已经有所发展或是发生改变。
    {
        "ph": "X", "cat": "gpu_memcpy", "name": "Memcpy DtoD (Device -> Device)", "pid": 1, "tid": 7,
        "ts": 1713351140570122, "dur": 386,
        "args": {
            "External id": 1529,
            "device": 1, "context": 1,
            "stream": 7, "correlation": 1529,
            "bytes": 163840000, "memory bandwidth (GB/s)": 424.2921773719471
        }
    }
    
    import torch
    import torch.distributed as dist
    import torch.nn as nn
    import torch.optim as optim
    import torch.profiler
    from torch.nn.parallel import DistributedDataParallel as DDP
    
    def setup(rank, world_size):
        import os
        os.environ['MASTER_ADDR'] = 'localhost'
        os.environ['MASTER_PORT'] = '12355'
        dist.init_process_group("nccl", rank=rank, world_size=world_size)
        torch.cuda.set_device(rank)
    
    def cleanup():
        dist.destroy_process_group()
    
    class SimpleModel(nn.Module):
        def __init__(self):
            super(SimpleModel, self).__init__()
            self.fc = nn.Linear(6400, 6400)
    
        def forward(self, x):
            return self.fc(x)
    
    def demo_basic(rank, world_size):
        setup(rank, world_size)
        
        # Create model and move it to GPU with id rank
        model = SimpleModel().to(rank)
        model = DDP(model, device_ids=[rank])
        
        optimizer = optim.SGD(model.parameters(), lr=0.01)
        
        # Create a random tensor to simulate input data
        inputs = torch.randn(200, 6400).to(rank)
        labels = torch.randn(200, 6400).to(rank)
        
        with torch.profiler.profile(
            activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
            schedule=torch.profiler.schedule(wait=1, warmup=1, active=3),
            on_trace_ready=torch.profiler.tensorboard_trace_handler('./logs'),
            profile_memory=True,  # Track memory allocation/deallocation.
            with_stack=True
        ) as prof:
            for _ in range(10):
                outputs = model(inputs)
                loss = nn.functional.mse_loss(outputs, labels)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                prof.step()
        
        cleanup()
    
    def main():
        world_size = 2
        torch.multiprocessing.spawn(demo_basic,
                                    args=(world_size,),
                                    nprocs=world_size,
                                    join=True)
    
    if __name__ == "__main__":
        main()
    

    第一个代码块是第二个代码块的日志的一份信息,我想测试两个卡之间的通信带宽,但是这个代码块一中的 bandwidth 有点看不懂了,为什么能达到 400+GB/s,硬件时 PCIE 4.0 x16 单机双卡 4090, 我用 https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/p2pBandwidthLatencyTest 测试了 p2p=disable 时的带宽(见代码块三),求老哥/师傅们解惑

    Bidirectional P2P=Disabled Bandwidth Matrix (GB/s)
       D\D     0      1 
         0 919.12   2.28 
         1   2.49 812.51
    
    目前尚无回复
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   2548 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 20ms · UTC 15:20 · PVG 23:20 · LAX 07:20 · JFK 10:20
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.